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Review



Hidden Markov models

• Belief network

S1 S2
. . .

O2O1

S3

O3 OT

ST

observations ot ∈ {1, 2, . . . ,m}

states st ∈ {1, 2, . . . ,n}

• Parameters

aij = P(St+1= j|St= i) n×n transition matrix

bik = P(Ot=k|St= i) n×m emission matrix

πi = P(S1= i) n×1 initial state distribution

• Notation

Sometimes we’ll write bi(k) = bik to avoid double
subscripts.
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Key computations in HMMs

OT-1

S1 S2 ST-1
. . .

O2O1

S3

O3

S4

O4 OT

ST

Inference

1. How to compute the likelihood P(o1,o2, . . . ,oT)?

2. How to compute the most likely hidden states argmax~s P(~s|~o)?

3. How to update beliefs by computing P(st|o1,o2, . . . ,ot)?

Learning

How to estimate parameters {πi,aij,bik} that maximize the
log-likelihood of observed sequences?

5 / 35



Example1 - Set Up

Imagine that you are a climatologist in the year 2799 studying
the history of global warming. You cannot find any records of
the weather in Baltimore, Maryland, for the summer of 2020,
but you do find Jason Eisner’s diary, which lists how many ice
creams (1, 2 or 3) Jason ate every day that summer. Our goal is
to use these observations to estimate the temperature every
day. We’ll simplify this weather task by assuming there are
only two kinds of days: cold (C) and hot (H).

1Eisner, J. 2002. An interactive spreadsheet for teaching the
forward-backward algorithm.
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Example

• Two hidden states (Weather): {H, C}
• Observations (Ice creams): {1, 2, 3}
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Computing likelihood via enumeration

Sequence of observations: o1 = 3,o2 = 1,o3 = 3

P(~o) =
∑
s1,s2,s3

P(o1,o2,o3, s1, s2, s3)

=
∑
s1,s2,s3

P(s1) · P(o1|s1) · P(s2|s1) · P(o2|s2) · P(s3|s2) · P(o3|s3)

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A. 2 B. 4 C. 8 D. 16 E. 32

Complexity: O(NT) where N = number of states, T = sequence
length
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Computing likelihood via enumeration

Possible state sequences:

C → C → C : P(C) · P(3|C) · P(C|C) · P(1|C) · P(C|C) · P(3|C)
C → C → H : P(C) · P(3|C) · P(C|C) · P(1|C) · P(H|C) · P(3|H)
C → H→ C : P(C) · P(3|C) · P(H|C) · P(1|H) · P(C|H) · P(3|C)
C → H→ H : P(C) · P(3|C) · P(H|C) · P(1|H) · P(H|H) · P(3|H)
H→ C → C : P(H) · P(3|H) · P(C|H) · P(1|C) · P(C|C) · P(3|C)
H→ C → H : P(H) · P(3|H) · P(C|H) · P(1|C) · P(H|C) · P(3|H)
H→ H→ C : P(H) · P(3|H) · P(H|H) · P(1|H) · P(C|H) · P(3|C)
H→ H→ H : P(H) · P(3|H) · P(H|H) · P(1|H) · P(H|H) · P(3|H)
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Example
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Forward Algorithm



Computing P(o1,o2, . . . ,ot, St= i)

Definition

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

αit = P(o1,o2, . . . ,ot, St= i)
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Example - Forward Algorithm
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Example - Forward Algorithm
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Example - Forward Algorithm
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Example - Forward Algorithm
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Example - Forward Algorithm
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Computing P(o1,o2, . . . ,ot, St= i)

• Definition

For a particular sequence of observations {o1,o2, . . . ,oT},
define the matrix with elements:

αit = P(o1,o2, . . . ,ot, St= i) n rows




α11 α12 · · · α1,T−1 α1T
α21 α22 · · · α2,T−1 α2T
...

...
...

...
...

αn1 αn2 · · · αn,T−1 αnT



αit represents the probability of being in state i after
seeing the first t observations.

• First column (t = 1)

αi1 = P(o1, S1= i)

= P(S1= i)P(o1|S1= i) product rule

= πi bi(o1) CPTs
18 / 35



Computing αi2 = P(o1,o2, S2= i)

• Next column (t = 2)

αj,2 = P(o1, o2, S2= j)

=
n∑
i=1

P(o1, o2, S1= i, S2= j) marginalization

=
n∑
i=1

[
P(o1, S1= i) ·

P(S2= j|o1, S1= i) ·

P(o2|o1, S1= i, S2= j)
]

product rule

=
n∑
i=1

[
P(o1, S1= i) P(S2= j|S1= i) P(o2|S2= j)

]
CI

=
n∑
i=1

αi1 aij bj(o2) CPTs
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Computing αit = P(o1,o2, . . . ,ot, St= i)

• Next columns (t > 1)

αj,t+1 = P(o1, o2, . . . , ot+1, St+1= j)

=
n∑
i=1

P(o1, o2, . . . , ot+1, St= i, St+1= j) marginalization

=
n∑
i=1

[
P(o1, o2, . . . , ot, St= i) ·

P(St+1= j|o1, o2, . . . , ot, St= i) ·

P(ot+1|o1, o2, . . . , ot, St= i, St+1= j)
]

product rule

=
n∑
i=1

[
P(o1, o2, . . . , ot, St= i) P(St+1= j|St= i) P(ot+1|St+1= j)

]
CI

=
n∑
i=1

αit aij bj(ot+1) CPTs
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Forward algorithm

The forward algorithm fills in the matrix of αit elements
one column at a time:

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)

Warning: for long sequences, beware of numerical underflow ...
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Computing the likelihood P(o1,o2, . . . ,oT)

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column
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Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column
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Computing the likelihood P(o1,o2, . . . ,oT)

Sum!

P(o1,o2, . . . ,oT)

=
n∑
i=1

P(o1,o2, . . . ,oT , sT= i) marginalization

=
n∑
i=1

αiT sum of last column
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Example - Forward Algorithm

αi1 = πi bi(o1)

αj,t+1 =
n∑
i=1

αit aij bj(ot+1)
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Question

What is the running time for Forward algorithm?

A. O(n)

B. O(n2)

C. O(Tn2)

D. O(T2n4)

E. O(nT )
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Pseudocode
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Viterbi algorithm



Viterbi Algorithm

There are many paths through the hidden states (H and C) that
lead to the given sequence, but they do not all have the same
probability.
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The most likely sequence of hidden states

The Viterbi algorithm allows us to efficiently compute the most
probable path using dynamic programming.

{s∗1 , s∗2 , . . . , s∗T}

= argmaxs1,s2,...,sT P(s1, s2, . . . , sT |o1,o2, . . . ,oT)
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The matrix `∗

For a particular sequence of observations {o1,o2, . . . ,oT},
we define the following matrix:

`∗it = max
s1,s2,...,st−1

P(s1, s2, . . . , st−1, St= i,o1,o2, . . . ,ot)

Q. What does `∗ mean, in English?

A. The probability of the most likely s1, · · · , st given
o1, · · · ,ot

B. The most likely state at time t

C. The probability of the most likely s1, · · · , st that ends in
state st = i and explains o1, · · · ,ot

D. The probability of most likely states s1, · · · , st that
explains observations o1, · · · ,ot
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Example - Viterbi (Fill `∗)
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Example - Viterbi (Backtrack through `∗)
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Viterbi Algorithm

In practice, we switch to log probabilities:

• Optimization stays the same (doesn’t change our outcome)
• Allows us to compute sums instead of products
• Prevent underflow
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That’s all folks!
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