CSE 150A-250A Al: Probabilistic Models

Lecture 11

Fall 2025

Trevor Bonjour

Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1/35



Review

Forward Algorithm

Viterbi algorithm

2/35



Review



Hidden Markov models

- Belief network

' ' . observations o; € {1,2,...,m}
gfé)—é— —»éa states sy € {1,2,...,n}

- Parameters
a; = P(St1=J|St=1) ’ nxn transition matrix\
b = P(Ot=Fk|Si=1) ’nxm emission matrix\
T = P(S1=1) ’ nx1initial state distribution \
- Notation

Sometimes we'll write b;(R) = bj, to avoid double

subscripts. L35



Key computations in HMMs

1. How to compute the likelihood P(04,0,,...,07)?

2. How to compute the most likely hidden states argmaxz P(5|0)?

3. How to update beliefs by computing P(s¢|01, 02, ..., 0¢)?

How to estimate parameters {m;, a;, bir} that maximize the
log-likelihood of observed sequences?
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Example' - Set Up

Imagine that you are a climatologist in the year 2799 studying
the history of global warming. You cannot find any records of
the weather in Baltimore, Maryland, for the summer of 2020,
but you do find Jason Eisner’s diary, which lists how many ice
creams (1,2 or 3) Jason ate every day that summer. Our goal is
to use these observations to estimate the temperature every
day. We'll simplify this weather task by assuming there are
only two kinds of days: cold (C) and hot (H).

"Eisner, J. 2002. An interactive spreadsheet for teaching the

forward-backward algorithm.
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- Two hidden states (Weather): {H,C}
- Observations (Ice creams): {1,2,3}

B, B,

pi|cop)| [5 P(1 | HOT) 2
P@2|coLp)| = | 4 pE|HOT) [ = |4
p@|coLp)| |.1 P(3 | HOT) 4
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Computing likelihood via enumeration

Sequence of observations: 04 =3,0, = 1,03 =3
P(0) = Z P(01,02,03,51,52,53)

51,52,53

= Y P(s1)- P(01]51) - P(sa]s1) - P(02]52) - P(S3]s2) - P(03]53)

51,52,53

Q. What is the number of all possible state sequences for the
three observations (3, 1, 3)?

A2 B.4 C.8 D.16 E.32

Complexity: O(NT) where N = number of states, T = sequence
length
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Forward Algorithm



Computing P(04,0,,...,0,St=1)

Definition

For a particular sequence of observations {01,05,...,071},
define the matrix with elements:

ajp = P(01,02,...,0¢,St=1)
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Example - Forward Algorithm

o, 0, 04

\ 4
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Example - Forward Algorithm

,(2)=.32
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Example - Forward Algorithm

@,(2)=32 0,(2)= 32".12 + .02".1 = 0404
fn P(HIH) * P(11H)
6*.2
3
> \)
izi oyM=02 - o
{ C,/ Q@\ N
- >
QA
S
o, 0, 04
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Example - Forward Algorithm

@,(2)=32 a,(2)=.32".12 + .02*.1 = .0404
, P(HIH) * P(1IH)
Y 7 6*.2
- C‘/A,) .
g« "1y,
570
3
S o
&£ am=02 e
A eWgr 2
c Q@\ ’
_ \Q\
R
S, A
o7

0,(1) = .32*.2 + .02".25"=.069
P(CIC) * P(1IC)
5*5
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Example - Forward Algorithm

«,(2)=.32 ay(2)= 3212 + .02".1 = 0404
Ca  PHHUPAM) o\
L p(C'//w ) Be 2 ,
N
R4 ‘s (7/0) o L
83 o
L gm=02 o™ 1) = 3272 + 02725069
- é»? ! . R\ \0\6' 2 ,// N
(o o _® Py p(1I0) L
N & 5*5
&
QA
D
oo
1 ;
0 0, 03
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Computing P(04,0,, ..., Ot, St=1)

- Definition

For a particular sequence of observations {01,05,...,071},
define the matrix with elements:

on Qe Q-1 o1
a1 an co Q2,71 QT

Qjp = P(O1,02,...,Ot,5t:f)

an an2 t n, T—1 anT

aj; represents the probability of being in state i after
seeing the first t observations.

- First column (t = 1)
ap = P(01,51=1)

- 5= plolsi =
= m;bj(or)
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Computing aj, = P(04,0,,S;,=1)

- Next column (t = 2)

aj; = P(01,02,5=))
=1
n
= Z[P(om:o-

=1
P(S2=jlo1,S1=1) -

P(02]01,51=1,S; :j)} product rule
n

= 3 [ponsi=iy sz =ilsi=i) loalsa =)

i=1

n
= D apa;bi(o)
=
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Computing «j; = P(04, 04, . . .,

- Next columns (t > 1)

Q) t 41

P(01,02,...,0t11,St11=J)

N P(01,02,...,0t41,5:=1,St+1=j) | marginalization

n

Z |:P(O1,0z,...,ot,5[=f) .

i1
P(Sty1=jl01,02,...,0¢,S¢=1) -

P(ot+q|oq,oz,.‘.,ot,S[:i,SM:j)} product rule
n

3 [P(m, 02, -+, 0, St =1) P(Ses1 =St =1) P(Op41[Se+ :f)]

i=1

Z Qijt au i(0t11)
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Forward algorithm

The forward algorithm fills in the matrix of «j; elements
one column at a time:

Q= ‘b‘(01)

Y1 = Zalt ajj bj(0t41)
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Computing the likelihood P(04, 05, ..., 071)

a1l || @12 || - || o1, T—1 || Q1T
a1 || a2 || - || a2, T—1 || Q2T
n rows
Xnl & n2 to &p T—1 XnT
P(01,02,...,071)
= ) P(01,0,,...,0r, ) ’marginalization
n
= Y ar  |sum of last column|
p
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Computing the likelihood P(04, 0, . . .,

n rows

P(O1,02, .

Sum!
11 || Q12 ap7-1 |[ear
a1 || 2 az T-1 || ear
xnl A n2 An, T—1 opT
,07)
n
> P(01,0,,...,07,57=1) ’ marginalization
P
n
> i [sum of last column]
=
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Computing the likelihood P(04, 0, . . .,

n rows

P(O1,02, .

Sum!
11 || Q12 ap7-1 |[ear
a1 || 2 az T-1 || ear
xnl A n2 An, T—1 opT
,07)
n
> P(01,0,,...,07,57=1) ’ marginalization
P
n
> i [sum of last column]
=
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Example - Forward Algorithm

i b»(oq)

(0t41)

Z@tau

Q=
Y1 =
@,)=.32
((H\)
N (C‘//y
e (7/0)
o
S N
& em=.02 »v\“\)‘

P(HIH) * P(1IH)

@,(2)=.32".12 + .02".1 = .0404

6*.2

y

t T 25735



What is the running time for Forward algorithm?

A. 0(n)

B
C. O
D
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Pseudocode

function FORWARD (observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N,T]

for each state s from 1 to N do ; initialization step
Sforward[s, 1]« s * bs(01)
for each time step ¢ from 2 to 7 do ; recursion step

for each state s from 1 to N d?v

forward[s,t] < Z forward[s',t — 1] * ay s * bs(or)

=1

N
forwardprob < Z forward[s,T) ; termination step

s=1
return forwardprob

QTN Y. %] The forward algorithm, where forward]s, t] represents o (s).
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Viterbi algorithm




Viterbi Algorithm

By B,

pitjcop)| [5 P(1| HOT) 2
P(2| coLD)| = | 4 P2|HOT) [ = [4
P@a|coo)| |1 P(3| HOT) 4

There are many paths through the hidden states (H and C) that

lead to the given sequence, but they all have the same
probability.
0, o, 05
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The most likely sequence of hidden states

The Viterbi algorithm allows us to efficiently compute the most
probable path using dynamic programming.

{s7,s3,...,S1}

= argmaxs, s, . s P(S1,52, ...,57|01,02, ..., OT)
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The matrix ¢*

For a particular sequence of observations {01,05,...,071},
we define the following matrix:

El*t = max P(S1,52,...,Stfq,st:i,O%Oz,...,Ot)
$1,52,4,5t—1

Q. What does £* mean, in English?

A. The probability of the most likely sy, -+, s; given
O1,-++,0¢
B. The most likely state at time t

C. The probability of the most likely s, -- -, s; that ends in
state s; = i and explains o4, -, 0¢

D. The probability of most likely states sy, --- , s; that
explains observations o4, - -« , 0¢
\ 731/35




Example - Viterbi (Fill ¢*)

(12)=32 (J(2)= max(.32".12, .02*.10) = .038
P(HIH) * P(11H
\Hy Ao ¢ )*2( ) Sommmmmmmmm e @
” "
4+ 0 N
Lo \\\ L
S @ £2(1) = max(.32" 20; 102":25) = 064
€ ow=02 o™ 2(1) = max(.32".20].02:25) = .
Toh £ __P(CIC) * P(1IC) e
NSRS o) 5*5
&
\QS‘;: N
01 ()2 03

\/
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Example - Viterbi (Backtrack through ¢*)

(i=382 __-- =~ o _ (32=max(32"12, .02".10) =.038

n P(HIH) *PAIH) _ o\ @
/’ - * . \\\
. /// (C//7’) »p(’ 6*.2 - L
-7 \ 2 (1 S I
-7 - Y \ C}\ T
\ Pats
7 Q§ N \ o\'?\\Y\ 3 = max(:32",20; 02%25) = .064
R L
VN Fe \___P(CIC)* P(1IC) e
W g 6 SO 5t -
\ e R
\ 2 /
\ \%@&» N /7
Q\o v /
/
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04 0, O3
t
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Viterbi Algorithm

In practice, we switch to log probabilities:

- Optimization stays the same (doesn’t change our outcome)
- Allows us to compute sums instead of products

+ Prevent underflow
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That's all folks!
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